Best Known (250−58, 250, s)-Nets in Base 4
(250−58, 250, 1044)-Net over F4 — Constructive and digital
Digital (192, 250, 1044)-net over F4, using
- 42 times duplication [i] based on digital (190, 248, 1044)-net over F4, using
- trace code for nets [i] based on digital (4, 62, 261)-net over F256, using
- net from sequence [i] based on digital (4, 260)-sequence over F256, using
- trace code for nets [i] based on digital (4, 62, 261)-net over F256, using
(250−58, 250, 3246)-Net over F4 — Digital
Digital (192, 250, 3246)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4250, 3246, F4, 58) (dual of [3246, 2996, 59]-code), using
- 2995 step Varšamov–Edel lengthening with (ri) = (16, 7, 4, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 28 times 0, 1, 28 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 32 times 0, 1, 34 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 51 times 0, 1, 51 times 0, 1, 53 times 0, 1, 55 times 0, 1, 55 times 0, 1, 57 times 0, 1, 59 times 0, 1, 60 times 0, 1, 62 times 0, 1, 63 times 0, 1, 65 times 0, 1, 66 times 0, 1, 68 times 0, 1, 70 times 0, 1, 72 times 0, 1, 73 times 0, 1, 76 times 0) [i] based on linear OA(458, 59, F4, 58) (dual of [59, 1, 59]-code or 59-arc in PG(57,4)), using
- dual of repetition code with length 59 [i]
- 2995 step Varšamov–Edel lengthening with (ri) = (16, 7, 4, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 28 times 0, 1, 28 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 32 times 0, 1, 34 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 51 times 0, 1, 51 times 0, 1, 53 times 0, 1, 55 times 0, 1, 55 times 0, 1, 57 times 0, 1, 59 times 0, 1, 60 times 0, 1, 62 times 0, 1, 63 times 0, 1, 65 times 0, 1, 66 times 0, 1, 68 times 0, 1, 70 times 0, 1, 72 times 0, 1, 73 times 0, 1, 76 times 0) [i] based on linear OA(458, 59, F4, 58) (dual of [59, 1, 59]-code or 59-arc in PG(57,4)), using
(250−58, 250, 602776)-Net in Base 4 — Upper bound on s
There is no (192, 250, 602777)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 3 273524 184182 745074 529098 523237 759372 645555 461504 630098 883303 623990 446898 946797 569309 257596 311182 503076 949753 883558 605703 541697 617181 591916 025721 180928 > 4250 [i]