Best Known (260−98, 260, s)-Nets in Base 4
(260−98, 260, 200)-Net over F4 — Constructive and digital
Digital (162, 260, 200)-net over F4, using
- t-expansion [i] based on digital (161, 260, 200)-net over F4, using
- net from sequence [i] based on digital (161, 199)-sequence over F4, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 161 and N(F) ≥ 200, using
- F7 from the tower of function fields by GarcÃa and Stichtenoth over F4 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 161 and N(F) ≥ 200, using
- net from sequence [i] based on digital (161, 199)-sequence over F4, using
(260−98, 260, 450)-Net over F4 — Digital
Digital (162, 260, 450)-net over F4, using
(260−98, 260, 9931)-Net in Base 4 — Upper bound on s
There is no (162, 260, 9932)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 3 433572 409085 475883 219804 352121 827676 480538 365975 514993 481345 299842 348873 746900 878181 675029 391651 046087 530267 920544 778205 825871 596939 502640 233166 867564 697420 > 4260 [i]