Best Known (158, 213, s)-Nets in Base 4
(158, 213, 536)-Net over F4 — Constructive and digital
Digital (158, 213, 536)-net over F4, using
- (u, u+v)-construction [i] based on
- digital (0, 27, 5)-net over F4, using
- net from sequence [i] based on digital (0, 4)-sequence over F4, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 0 and N(F) ≥ 5, using
- the rational function field F4(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 4)-sequence over F4, using
- digital (131, 186, 531)-net over F4, using
- trace code for nets [i] based on digital (7, 62, 177)-net over F64, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 7 and N(F) ≥ 177, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- trace code for nets [i] based on digital (7, 62, 177)-net over F64, using
- digital (0, 27, 5)-net over F4, using
(158, 213, 648)-Net in Base 4 — Constructive
(158, 213, 648)-net in base 4, using
- 43 times duplication [i] based on (155, 210, 648)-net in base 4, using
- trace code for nets [i] based on (15, 70, 216)-net in base 64, using
- base change [i] based on digital (5, 60, 216)-net over F128, using
- net from sequence [i] based on digital (5, 215)-sequence over F128, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 5 and N(F) ≥ 216, using
- net from sequence [i] based on digital (5, 215)-sequence over F128, using
- base change [i] based on digital (5, 60, 216)-net over F128, using
- trace code for nets [i] based on (15, 70, 216)-net in base 64, using
(158, 213, 1684)-Net over F4 — Digital
Digital (158, 213, 1684)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4213, 1684, F4, 55) (dual of [1684, 1471, 56]-code), using
- 1470 step Varšamov–Edel lengthening with (ri) = (15, 7, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 30 times 0, 1, 32 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 36 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0) [i] based on linear OA(455, 56, F4, 55) (dual of [56, 1, 56]-code or 56-arc in PG(54,4)), using
- dual of repetition code with length 56 [i]
- 1470 step Varšamov–Edel lengthening with (ri) = (15, 7, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 30 times 0, 1, 32 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 36 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0) [i] based on linear OA(455, 56, F4, 55) (dual of [56, 1, 56]-code or 56-arc in PG(54,4)), using
(158, 213, 194322)-Net in Base 4 — Upper bound on s
There is no (158, 213, 194323)-net in base 4, because
- 1 times m-reduction [i] would yield (158, 212, 194323)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 43 328341 722002 831153 642442 701850 730572 460332 268653 953217 039127 483107 475141 221785 792906 497735 222495 709398 142139 657134 409675 253120 > 4212 [i]