Best Known (139−35, 139, s)-Nets in Base 5
(139−35, 139, 412)-Net over F5 — Constructive and digital
Digital (104, 139, 412)-net over F5, using
- (u, u+v)-construction [i] based on
- digital (2, 19, 12)-net over F5, using
- net from sequence [i] based on digital (2, 11)-sequence over F5, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F5 with g(F) = 2 and N(F) ≥ 12, using
- net from sequence [i] based on digital (2, 11)-sequence over F5, using
- digital (85, 120, 400)-net over F5, using
- trace code for nets [i] based on digital (25, 60, 200)-net over F25, using
- net from sequence [i] based on digital (25, 199)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 25 and N(F) ≥ 200, using
- net from sequence [i] based on digital (25, 199)-sequence over F25, using
- trace code for nets [i] based on digital (25, 60, 200)-net over F25, using
- digital (2, 19, 12)-net over F5, using
(139−35, 139, 2455)-Net over F5 — Digital
Digital (104, 139, 2455)-net over F5, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(5139, 2455, F5, 35) (dual of [2455, 2316, 36]-code), using
- 2315 step Varšamov–Edel lengthening with (ri) = (8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 18 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0, 1, 32 times 0, 1, 35 times 0, 1, 36 times 0, 1, 37 times 0, 1, 40 times 0, 1, 42 times 0, 1, 44 times 0, 1, 46 times 0, 1, 48 times 0, 1, 51 times 0, 1, 53 times 0, 1, 56 times 0, 1, 59 times 0, 1, 62 times 0, 1, 65 times 0, 1, 68 times 0, 1, 72 times 0, 1, 75 times 0, 1, 79 times 0, 1, 83 times 0, 1, 87 times 0, 1, 91 times 0, 1, 96 times 0, 1, 100 times 0, 1, 106 times 0, 1, 111 times 0) [i] based on linear OA(535, 36, F5, 35) (dual of [36, 1, 36]-code or 36-arc in PG(34,5)), using
- dual of repetition code with length 36 [i]
- 2315 step Varšamov–Edel lengthening with (ri) = (8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 18 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0, 1, 32 times 0, 1, 35 times 0, 1, 36 times 0, 1, 37 times 0, 1, 40 times 0, 1, 42 times 0, 1, 44 times 0, 1, 46 times 0, 1, 48 times 0, 1, 51 times 0, 1, 53 times 0, 1, 56 times 0, 1, 59 times 0, 1, 62 times 0, 1, 65 times 0, 1, 68 times 0, 1, 72 times 0, 1, 75 times 0, 1, 79 times 0, 1, 83 times 0, 1, 87 times 0, 1, 91 times 0, 1, 96 times 0, 1, 100 times 0, 1, 106 times 0, 1, 111 times 0) [i] based on linear OA(535, 36, F5, 35) (dual of [36, 1, 36]-code or 36-arc in PG(34,5)), using
(139−35, 139, 846975)-Net in Base 5 — Upper bound on s
There is no (104, 139, 846976)-net in base 5, because
- 1 times m-reduction [i] would yield (104, 138, 846976)-net in base 5, but
- the generalized Rao bound for nets shows that 5m ≥ 2 869900 838063 870475 857065 250230 099175 901386 591542 138311 717423 438092 995758 797670 416816 410606 989825 > 5138 [i]