Best Known (58, 80, s)-Nets in Base 5
(58, 80, 272)-Net over F5 — Constructive and digital
Digital (58, 80, 272)-net over F5, using
- (u, u+v)-construction [i] based on
- digital (5, 16, 20)-net over F5, using
- net from sequence [i] based on digital (5, 19)-sequence over F5, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F5 with g(F) = 5 and N(F) ≥ 20, using
- net from sequence [i] based on digital (5, 19)-sequence over F5, using
- digital (42, 64, 252)-net over F5, using
- trace code for nets [i] based on digital (10, 32, 126)-net over F25, using
- net from sequence [i] based on digital (10, 125)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 10 and N(F) ≥ 126, using
- the Hermitian function field over F25 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 10 and N(F) ≥ 126, using
- net from sequence [i] based on digital (10, 125)-sequence over F25, using
- trace code for nets [i] based on digital (10, 32, 126)-net over F25, using
- digital (5, 16, 20)-net over F5, using
(58, 80, 1009)-Net over F5 — Digital
Digital (58, 80, 1009)-net over F5, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(580, 1009, F5, 22) (dual of [1009, 929, 23]-code), using
- 928 step Varšamov–Edel lengthening with (ri) = (5, 3, 1, 2, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 22 times 0, 1, 23 times 0, 1, 25 times 0, 1, 27 times 0, 1, 30 times 0, 1, 32 times 0, 1, 35 times 0, 1, 38 times 0, 1, 41 times 0, 1, 45 times 0, 1, 48 times 0, 1, 52 times 0, 1, 57 times 0, 1, 61 times 0, 1, 66 times 0, 1, 72 times 0) [i] based on linear OA(522, 23, F5, 22) (dual of [23, 1, 23]-code or 23-arc in PG(21,5)), using
- dual of repetition code with length 23 [i]
- 928 step Varšamov–Edel lengthening with (ri) = (5, 3, 1, 2, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 22 times 0, 1, 23 times 0, 1, 25 times 0, 1, 27 times 0, 1, 30 times 0, 1, 32 times 0, 1, 35 times 0, 1, 38 times 0, 1, 41 times 0, 1, 45 times 0, 1, 48 times 0, 1, 52 times 0, 1, 57 times 0, 1, 61 times 0, 1, 66 times 0, 1, 72 times 0) [i] based on linear OA(522, 23, F5, 22) (dual of [23, 1, 23]-code or 23-arc in PG(21,5)), using
(58, 80, 148713)-Net in Base 5 — Upper bound on s
There is no (58, 80, 148714)-net in base 5, because
- the generalized Rao bound for nets shows that 5m ≥ 82 722478 860144 337008 330433 322159 560888 515237 841993 323337 > 580 [i]