Best Known (80−46, 80, s)-Nets in Base 64
(80−46, 80, 513)-Net over F64 — Constructive and digital
Digital (34, 80, 513)-net over F64, using
- t-expansion [i] based on digital (28, 80, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(80−46, 80, 516)-Net over F64 — Digital
Digital (34, 80, 516)-net over F64, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(6480, 516, F64, 3, 46) (dual of [(516, 3), 1468, 47]-NRT-code), using
- construction X applied to AG(3;F,1489P) ⊂ AG(3;F,1496P) [i] based on
- linear OOA(6474, 512, F64, 3, 46) (dual of [(512, 3), 1462, 47]-NRT-code), using algebraic-geometric NRT-code AG(3;F,1489P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- linear OOA(6467, 512, F64, 3, 39) (dual of [(512, 3), 1469, 40]-NRT-code), using algebraic-geometric NRT-code AG(3;F,1496P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513 (see above)
- linear OOA(646, 4, F64, 3, 6) (dual of [(4, 3), 6, 7]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(646, 64, F64, 3, 6) (dual of [(64, 3), 186, 7]-NRT-code), using
- Reed–Solomon NRT-code RS(3;186,64) [i]
- discarding factors / shortening the dual code based on linear OOA(646, 64, F64, 3, 6) (dual of [(64, 3), 186, 7]-NRT-code), using
- linear OOA(6474, 512, F64, 3, 46) (dual of [(512, 3), 1462, 47]-NRT-code), using algebraic-geometric NRT-code AG(3;F,1489P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- construction X applied to AG(3;F,1489P) ⊂ AG(3;F,1496P) [i] based on
(80−46, 80, 286723)-Net in Base 64 — Upper bound on s
There is no (34, 80, 286724)-net in base 64, because
- the generalized Rao bound for nets shows that 64m ≥ 3 121815 300690 864979 368048 910911 478538 278794 712908 033800 638179 382615 396958 983662 622896 220425 748259 885165 238152 656037 178896 559048 505368 602497 165312 > 6480 [i]