Best Known (36, 36+48, s)-Nets in Base 64
(36, 36+48, 513)-Net over F64 — Constructive and digital
Digital (36, 84, 513)-net over F64, using
- t-expansion [i] based on digital (28, 84, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(36, 36+48, 520)-Net over F64 — Digital
Digital (36, 84, 520)-net over F64, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(6484, 520, F64, 2, 48) (dual of [(520, 2), 956, 49]-NRT-code), using
- construction X applied to AG(2;F,975P) ⊂ AG(2;F,984P) [i] based on
- linear OOA(6476, 512, F64, 2, 48) (dual of [(512, 2), 948, 49]-NRT-code), using algebraic-geometric NRT-code AG(2;F,975P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- linear OOA(6467, 512, F64, 2, 39) (dual of [(512, 2), 957, 40]-NRT-code), using algebraic-geometric NRT-code AG(2;F,984P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513 (see above)
- linear OOA(648, 8, F64, 2, 8) (dual of [(8, 2), 8, 9]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(648, 64, F64, 2, 8) (dual of [(64, 2), 120, 9]-NRT-code), using
- Reed–Solomon NRT-code RS(2;120,64) [i]
- discarding factors / shortening the dual code based on linear OOA(648, 64, F64, 2, 8) (dual of [(64, 2), 120, 9]-NRT-code), using
- linear OOA(6476, 512, F64, 2, 48) (dual of [(512, 2), 948, 49]-NRT-code), using algebraic-geometric NRT-code AG(2;F,975P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- construction X applied to AG(2;F,975P) ⊂ AG(2;F,984P) [i] based on
(36, 36+48, 326314)-Net in Base 64 — Upper bound on s
There is no (36, 84, 326315)-net in base 64, because
- the generalized Rao bound for nets shows that 64m ≥ 52 376432 392609 232385 422780 002760 930598 112065 071802 202213 167649 096545 050930 144555 014721 653456 707156 299179 716886 450721 478464 743560 827825 685180 022232 605666 > 6484 [i]