Best Known (11, 11+5, s)-Nets in Base 64
(11, 11+5, 266240)-Net over F64 — Constructive and digital
Digital (11, 16, 266240)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 4160)-net over F64, using
- s-reduction based on digital (0, 0, s)-net over F64 with arbitrarily large s, using
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 1, 4160)-net over F64, using
- s-reduction based on digital (0, 1, s)-net over F64 with arbitrarily large s, using
- digital (0, 1, 4160)-net over F64 (see above)
- digital (0, 1, 4160)-net over F64 (see above)
- digital (1, 3, 4160)-net over F64, using
- s-reduction based on digital (1, 3, 4161)-net over F64, using
- digital (5, 10, 4160)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 65)-net over F64, using
- s-reduction based on digital (0, 0, s)-net over F64 with arbitrarily large s (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 1, 65)-net over F64, using
- s-reduction based on digital (0, 1, s)-net over F64 with arbitrarily large s (see above)
- digital (0, 1, 65)-net over F64 (see above)
- digital (0, 1, 65)-net over F64 (see above)
- digital (0, 2, 65)-net over F64, using
- digital (0, 5, 65)-net over F64, using
- net from sequence [i] based on digital (0, 64)-sequence over F64, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 0 and N(F) ≥ 65, using
- the rational function field F64(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 64)-sequence over F64, using
- digital (0, 0, 65)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 4160)-net over F64, using
(11, 11+5, 589432)-Net over F64 — Digital
Digital (11, 16, 589432)-net over F64, using
(11, 11+5, 1048577)-Net in Base 64 — Constructive
(11, 16, 1048577)-net in base 64, using
- net defined by OOA [i] based on OOA(6416, 1048577, S64, 5, 5), using
- OOA 2-folding and stacking with additional row [i] based on OA(6416, 2097155, S64, 5), using
- discarding parts of the base [i] based on linear OA(12813, 2097155, F128, 5) (dual of [2097155, 2097142, 6]-code), using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- linear OA(12813, 2097152, F128, 5) (dual of [2097152, 2097139, 6]-code), using an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(12810, 2097152, F128, 4) (dual of [2097152, 2097142, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(1280, 3, F128, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(1280, s, F128, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- discarding parts of the base [i] based on linear OA(12813, 2097155, F128, 5) (dual of [2097155, 2097142, 6]-code), using
- OOA 2-folding and stacking with additional row [i] based on OA(6416, 2097155, S64, 5), using
(11, 11+5, 2097154)-Net in Base 64
(11, 16, 2097154)-net in base 64, using
- net defined by OOA [i] based on OOA(6416, 2097154, S64, 6, 5), using
- OOA stacking with additional row [i] based on OOA(6416, 2097155, S64, 2, 5), using
- discarding parts of the base [i] based on linear OOA(12813, 2097155, F128, 2, 5) (dual of [(2097155, 2), 4194297, 6]-NRT-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(12813, 2097155, F128, 5) (dual of [2097155, 2097142, 6]-code), using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- linear OA(12813, 2097152, F128, 5) (dual of [2097152, 2097139, 6]-code), using an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(12810, 2097152, F128, 4) (dual of [2097152, 2097142, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(1280, 3, F128, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(1280, s, F128, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(12813, 2097155, F128, 5) (dual of [2097155, 2097142, 6]-code), using
- discarding parts of the base [i] based on linear OOA(12813, 2097155, F128, 2, 5) (dual of [(2097155, 2), 4194297, 6]-NRT-code), using
- OOA stacking with additional row [i] based on OOA(6416, 2097155, S64, 2, 5), using
(11, 11+5, large)-Net in Base 64 — Upper bound on s
There is no (11, 16, large)-net in base 64, because
- 3 times m-reduction [i] would yield (11, 13, large)-net in base 64, but