Best Known (49, 60, s)-Nets in Base 64
(49, 60, 3355440)-Net over F64 — Constructive and digital
Digital (49, 60, 3355440)-net over F64, using
- 642 times duplication [i] based on digital (47, 58, 3355440)-net over F64, using
- (u, u+v)-construction [i] based on
- digital (12, 17, 4194301)-net over F64, using
- net defined by OOA [i] based on linear OOA(6417, 4194301, F64, 5, 5) (dual of [(4194301, 5), 20971488, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(6417, large, F64, 5) (dual of [large, large−17, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- OOA 2-folding and stacking with additional row [i] based on linear OA(6417, large, F64, 5) (dual of [large, large−17, 6]-code), using
- net defined by OOA [i] based on linear OOA(6417, 4194301, F64, 5, 5) (dual of [(4194301, 5), 20971488, 6]-NRT-code), using
- digital (30, 41, 1677720)-net over F64, using
- net defined by OOA [i] based on linear OOA(6441, 1677720, F64, 11, 11) (dual of [(1677720, 11), 18454879, 12]-NRT-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(6441, 8388601, F64, 11) (dual of [8388601, 8388560, 12]-code), using
- discarding factors / shortening the dual code based on linear OA(6441, large, F64, 11) (dual of [large, large−41, 12]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- discarding factors / shortening the dual code based on linear OA(6441, large, F64, 11) (dual of [large, large−41, 12]-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(6441, 8388601, F64, 11) (dual of [8388601, 8388560, 12]-code), using
- net defined by OOA [i] based on linear OOA(6441, 1677720, F64, 11, 11) (dual of [(1677720, 11), 18454879, 12]-NRT-code), using
- digital (12, 17, 4194301)-net over F64, using
- (u, u+v)-construction [i] based on
(49, 60, 3355648)-Net in Base 64 — Constructive
(49, 60, 3355648)-net in base 64, using
- base change [i] based on digital (34, 45, 3355648)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 13108)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256 (see above)
- digital (1, 3, 13108)-net over F256, using
- s-reduction based on digital (1, 3, 65793)-net over F256, using
- digital (1, 3, 13108)-net over F256 (see above)
- digital (1, 4, 13108)-net over F256, using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(2564, 65537, F256, 2, 3) (dual of [(65537, 2), 131070, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- digital (2, 7, 13108)-net over F256, using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- digital (11, 22, 13108)-net over F256, using
- net defined by OOA [i] based on linear OOA(25622, 13108, F256, 11, 11) (dual of [(13108, 11), 144166, 12]-NRT-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(25622, 65541, F256, 11) (dual of [65541, 65519, 12]-code), using
- discarding factors / shortening the dual code based on linear OA(25622, 65542, F256, 11) (dual of [65542, 65520, 12]-code), using
- construction X applied to C([0,5]) ⊂ C([0,4]) [i] based on
- linear OA(25621, 65537, F256, 11) (dual of [65537, 65516, 12]-code), using the expurgated narrow-sense BCH-code C(I) with length 65537 | 2564−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- linear OA(25617, 65537, F256, 9) (dual of [65537, 65520, 10]-code), using the expurgated narrow-sense BCH-code C(I) with length 65537 | 2564−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
- linear OA(2561, 5, F256, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(2561, s, F256, 1) (dual of [s, s−1, 2]-code) with arbitrarily large s, using
- construction X applied to C([0,5]) ⊂ C([0,4]) [i] based on
- discarding factors / shortening the dual code based on linear OA(25622, 65542, F256, 11) (dual of [65542, 65520, 12]-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(25622, 65541, F256, 11) (dual of [65541, 65519, 12]-code), using
- net defined by OOA [i] based on linear OOA(25622, 13108, F256, 11, 11) (dual of [(13108, 11), 144166, 12]-NRT-code), using
- digital (0, 0, 13108)-net over F256, using
- generalized (u, u+v)-construction [i] based on
(49, 60, large)-Net over F64 — Digital
Digital (49, 60, large)-net over F64, using
- t-expansion [i] based on digital (47, 60, large)-net over F64, using
- 3 times m-reduction [i] based on digital (47, 63, large)-net over F64, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(6463, large, F64, 16) (dual of [large, large−63, 17]-code), using
- 2 times code embedding in larger space [i] based on linear OA(6461, large, F64, 16) (dual of [large, large−61, 17]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 644−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
- 2 times code embedding in larger space [i] based on linear OA(6461, large, F64, 16) (dual of [large, large−61, 17]-code), using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(6463, large, F64, 16) (dual of [large, large−63, 17]-code), using
- 3 times m-reduction [i] based on digital (47, 63, large)-net over F64, using
(49, 60, large)-Net in Base 64 — Upper bound on s
There is no (49, 60, large)-net in base 64, because
- 9 times m-reduction [i] would yield (49, 51, large)-net in base 64, but