Best Known (61, 61+33, s)-Nets in Base 8
(61, 61+33, 354)-Net over F8 — Constructive and digital
Digital (61, 94, 354)-net over F8, using
- 14 times m-reduction [i] based on digital (61, 108, 354)-net over F8, using
- trace code for nets [i] based on digital (7, 54, 177)-net over F64, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 7 and N(F) ≥ 177, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- trace code for nets [i] based on digital (7, 54, 177)-net over F64, using
(61, 61+33, 518)-Net in Base 8 — Constructive
(61, 94, 518)-net in base 8, using
- trace code for nets [i] based on (14, 47, 259)-net in base 64, using
- 1 times m-reduction [i] based on (14, 48, 259)-net in base 64, using
- base change [i] based on digital (2, 36, 259)-net over F256, using
- net from sequence [i] based on digital (2, 258)-sequence over F256, using
- base change [i] based on digital (2, 36, 259)-net over F256, using
- 1 times m-reduction [i] based on (14, 48, 259)-net in base 64, using
(61, 61+33, 838)-Net over F8 — Digital
Digital (61, 94, 838)-net over F8, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(894, 838, F8, 33) (dual of [838, 744, 34]-code), using
- 743 step Varšamov–Edel lengthening with (ri) = (5, 3, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 22 times 0, 1, 23 times 0, 1, 25 times 0, 1, 27 times 0, 1, 29 times 0, 1, 30 times 0, 1, 33 times 0, 1, 36 times 0, 1, 38 times 0, 1, 40 times 0, 1, 43 times 0, 1, 47 times 0, 1, 50 times 0) [i] based on linear OA(833, 34, F8, 33) (dual of [34, 1, 34]-code or 34-arc in PG(32,8)), using
- dual of repetition code with length 34 [i]
- 743 step Varšamov–Edel lengthening with (ri) = (5, 3, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 22 times 0, 1, 23 times 0, 1, 25 times 0, 1, 27 times 0, 1, 29 times 0, 1, 30 times 0, 1, 33 times 0, 1, 36 times 0, 1, 38 times 0, 1, 40 times 0, 1, 43 times 0, 1, 47 times 0, 1, 50 times 0) [i] based on linear OA(833, 34, F8, 33) (dual of [34, 1, 34]-code or 34-arc in PG(32,8)), using
(61, 61+33, 172435)-Net in Base 8 — Upper bound on s
There is no (61, 94, 172436)-net in base 8, because
- 1 times m-reduction [i] would yield (61, 93, 172436)-net in base 8, but
- the generalized Rao bound for nets shows that 8m ≥ 971382 792360 988251 828575 937503 629604 628408 017513 334745 019503 719704 870697 029338 630353 > 893 [i]