Best Known (113, 113+44, s)-Nets in Base 8
(113, 113+44, 1026)-Net over F8 — Constructive and digital
Digital (113, 157, 1026)-net over F8, using
- 13 times m-reduction [i] based on digital (113, 170, 1026)-net over F8, using
- trace code for nets [i] based on digital (28, 85, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- trace code for nets [i] based on digital (28, 85, 513)-net over F64, using
(113, 113+44, 4804)-Net over F8 — Digital
Digital (113, 157, 4804)-net over F8, using
(113, 113+44, 3601901)-Net in Base 8 — Upper bound on s
There is no (113, 157, 3601902)-net in base 8, because
- the generalized Rao bound for nets shows that 8m ≥ 6097 167281 578508 565127 133873 610944 862797 362091 906670 978263 863059 572195 484083 749478 311980 685016 543017 795017 176098 061566 917465 492887 320333 051976 > 8157 [i]