Best Known (113, 113+45, s)-Nets in Base 8
(113, 113+45, 1026)-Net over F8 — Constructive and digital
Digital (113, 158, 1026)-net over F8, using
- 12 times m-reduction [i] based on digital (113, 170, 1026)-net over F8, using
- trace code for nets [i] based on digital (28, 85, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- trace code for nets [i] based on digital (28, 85, 513)-net over F64, using
(113, 113+45, 4335)-Net over F8 — Digital
Digital (113, 158, 4335)-net over F8, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(8158, 4335, F8, 45) (dual of [4335, 4177, 46]-code), using
- 4176 step Varšamov–Edel lengthening with (ri) = (7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 11 times 0, 1, 10 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 30 times 0, 1, 31 times 0, 1, 33 times 0, 1, 34 times 0, 1, 36 times 0, 1, 38 times 0, 1, 40 times 0, 1, 42 times 0, 1, 44 times 0, 1, 46 times 0, 1, 48 times 0, 1, 51 times 0, 1, 54 times 0, 1, 56 times 0, 1, 59 times 0, 1, 62 times 0, 1, 65 times 0, 1, 69 times 0, 1, 72 times 0, 1, 75 times 0, 1, 79 times 0, 1, 83 times 0, 1, 87 times 0, 1, 92 times 0, 1, 96 times 0, 1, 100 times 0, 1, 106 times 0, 1, 111 times 0, 1, 116 times 0, 1, 122 times 0, 1, 128 times 0, 1, 135 times 0, 1, 141 times 0, 1, 148 times 0, 1, 155 times 0, 1, 163 times 0, 1, 171 times 0, 1, 179 times 0, 1, 188 times 0, 1, 197 times 0) [i] based on linear OA(845, 46, F8, 45) (dual of [46, 1, 46]-code or 46-arc in PG(44,8)), using
- dual of repetition code with length 46 [i]
- 4176 step Varšamov–Edel lengthening with (ri) = (7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 11 times 0, 1, 10 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 30 times 0, 1, 31 times 0, 1, 33 times 0, 1, 34 times 0, 1, 36 times 0, 1, 38 times 0, 1, 40 times 0, 1, 42 times 0, 1, 44 times 0, 1, 46 times 0, 1, 48 times 0, 1, 51 times 0, 1, 54 times 0, 1, 56 times 0, 1, 59 times 0, 1, 62 times 0, 1, 65 times 0, 1, 69 times 0, 1, 72 times 0, 1, 75 times 0, 1, 79 times 0, 1, 83 times 0, 1, 87 times 0, 1, 92 times 0, 1, 96 times 0, 1, 100 times 0, 1, 106 times 0, 1, 111 times 0, 1, 116 times 0, 1, 122 times 0, 1, 128 times 0, 1, 135 times 0, 1, 141 times 0, 1, 148 times 0, 1, 155 times 0, 1, 163 times 0, 1, 171 times 0, 1, 179 times 0, 1, 188 times 0, 1, 197 times 0) [i] based on linear OA(845, 46, F8, 45) (dual of [46, 1, 46]-code or 46-arc in PG(44,8)), using
(113, 113+45, 3601901)-Net in Base 8 — Upper bound on s
There is no (113, 158, 3601902)-net in base 8, because
- 1 times m-reduction [i] would yield (113, 157, 3601902)-net in base 8, but
- the generalized Rao bound for nets shows that 8m ≥ 6097 167281 578508 565127 133873 610944 862797 362091 906670 978263 863059 572195 484083 749478 311980 685016 543017 795017 176098 061566 917465 492887 320333 051976 > 8157 [i]