Best Known (159−46, 159, s)-Nets in Base 8
(159−46, 159, 1026)-Net over F8 — Constructive and digital
Digital (113, 159, 1026)-net over F8, using
- 11 times m-reduction [i] based on digital (113, 170, 1026)-net over F8, using
- trace code for nets [i] based on digital (28, 85, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- trace code for nets [i] based on digital (28, 85, 513)-net over F64, using
(159−46, 159, 3931)-Net over F8 — Digital
Digital (113, 159, 3931)-net over F8, using
(159−46, 159, 2357523)-Net in Base 8 — Upper bound on s
There is no (113, 159, 2357524)-net in base 8, because
- the generalized Rao bound for nets shows that 8m ≥ 390222 080595 657659 923918 596639 553320 746622 978127 674424 311439 651028 286281 295139 264359 885422 571290 595823 465291 719271 029395 689955 838113 540254 562240 > 8159 [i]