Best Known (108, 108+57, s)-Nets in Base 8
(108, 108+57, 399)-Net over F8 — Constructive and digital
Digital (108, 165, 399)-net over F8, using
- (u, u+v)-construction [i] based on
- digital (9, 37, 45)-net over F8, using
- net from sequence [i] based on digital (9, 44)-sequence over F8, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F8 with g(F) = 9 and N(F) ≥ 45, using
- net from sequence [i] based on digital (9, 44)-sequence over F8, using
- digital (71, 128, 354)-net over F8, using
- trace code for nets [i] based on digital (7, 64, 177)-net over F64, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 7 and N(F) ≥ 177, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- trace code for nets [i] based on digital (7, 64, 177)-net over F64, using
- digital (9, 37, 45)-net over F8, using
(108, 108+57, 576)-Net in Base 8 — Constructive
(108, 165, 576)-net in base 8, using
- 7 times m-reduction [i] based on (108, 172, 576)-net in base 8, using
- trace code for nets [i] based on (22, 86, 288)-net in base 64, using
- 5 times m-reduction [i] based on (22, 91, 288)-net in base 64, using
- base change [i] based on digital (9, 78, 288)-net over F128, using
- net from sequence [i] based on digital (9, 287)-sequence over F128, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 9 and N(F) ≥ 288, using
- net from sequence [i] based on digital (9, 287)-sequence over F128, using
- base change [i] based on digital (9, 78, 288)-net over F128, using
- 5 times m-reduction [i] based on (22, 91, 288)-net in base 64, using
- trace code for nets [i] based on (22, 86, 288)-net in base 64, using
(108, 108+57, 1449)-Net over F8 — Digital
Digital (108, 165, 1449)-net over F8, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(8165, 1449, F8, 57) (dual of [1449, 1284, 58]-code), using
- 1283 step Varšamov–Edel lengthening with (ri) = (9, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 45 times 0, 1, 46 times 0, 1, 48 times 0, 1, 50 times 0) [i] based on linear OA(857, 58, F8, 57) (dual of [58, 1, 58]-code or 58-arc in PG(56,8)), using
- dual of repetition code with length 58 [i]
- 1283 step Varšamov–Edel lengthening with (ri) = (9, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 45 times 0, 1, 46 times 0, 1, 48 times 0, 1, 50 times 0) [i] based on linear OA(857, 58, F8, 57) (dual of [58, 1, 58]-code or 58-arc in PG(56,8)), using
(108, 108+57, 314347)-Net in Base 8 — Upper bound on s
There is no (108, 165, 314348)-net in base 8, because
- 1 times m-reduction [i] would yield (108, 164, 314348)-net in base 8, but
- the generalized Rao bound for nets shows that 8m ≥ 12787 359691 248091 263848 204604 674929 783629 297162 491367 689268 283615 597814 705401 976555 656797 724509 756383 577246 640465 716621 933946 423184 227336 438590 041064 > 8164 [i]