Best Known (17, 114, s)-Nets in Base 8
(17, 114, 65)-Net over F8 — Constructive and digital
Digital (17, 114, 65)-net over F8, using
- t-expansion [i] based on digital (14, 114, 65)-net over F8, using
- net from sequence [i] based on digital (14, 64)-sequence over F8, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F8 with g(F) = 14 and N(F) ≥ 65, using
- the Suzuki function field over F8 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F8 with g(F) = 14 and N(F) ≥ 65, using
- net from sequence [i] based on digital (14, 64)-sequence over F8, using
(17, 114, 242)-Net over F8 — Upper bound on s (digital)
There is no digital (17, 114, 243)-net over F8, because
- extracting embedded orthogonal array [i] would yield linear OA(8114, 243, F8, 97) (dual of [243, 129, 98]-code), but
- construction Y1 [i] would yield
- OA(8113, 133, S8, 97), but
- the linear programming bound shows that M ≥ 12 390882 077619 361809 374608 876210 720807 026167 766516 794505 907066 021724 648856 397281 926521 911401 767561 061604 125143 861641 084928 / 10 910069 338930 636875 > 8113 [i]
- linear OA(8129, 243, F8, 110) (dual of [243, 114, 111]-code), but
- discarding factors / shortening the dual code would yield linear OA(8129, 230, F8, 110) (dual of [230, 101, 111]-code), but
- construction Y1 [i] would yield
- OA(8128, 144, S8, 110), but
- the linear programming bound shows that M ≥ 6109 893966 434273 613815 828543 318095 703793 603744 881950 919851 825987 742070 359262 466307 770153 217353 472069 496822 008994 926770 763501 404160 / 124 535855 141787 > 8128 [i]
- OA(8101, 230, S8, 86), but
- discarding factors would yield OA(8101, 146, S8, 86), but
- the linear programming bound shows that M ≥ 47452 756982 762840 644180 785646 906838 805374 098587 752364 011747 551574 239635 502216 492748 447610 784265 998302 557863 887131 929643 838881 370395 949171 355783 528448 / 2798 356661 117080 828757 255676 140575 034437 993397 485091 746485 > 8101 [i]
- discarding factors would yield OA(8101, 146, S8, 86), but
- OA(8128, 144, S8, 110), but
- construction Y1 [i] would yield
- discarding factors / shortening the dual code would yield linear OA(8129, 230, F8, 110) (dual of [230, 101, 111]-code), but
- OA(8113, 133, S8, 97), but
- construction Y1 [i] would yield
(17, 114, 295)-Net in Base 8 — Upper bound on s
There is no (17, 114, 296)-net in base 8, because
- 5 times m-reduction [i] would yield (17, 109, 296)-net in base 8, but
- extracting embedded orthogonal array [i] would yield OA(8109, 296, S8, 92), but
- 4 times code embedding in larger space [i] would yield OA(8113, 300, S8, 92), but
- the linear programming bound shows that M ≥ 1 781634 836527 846280 733573 421279 205384 148048 302886 393164 147084 545703 578857 792296 708926 378665 174216 714878 248812 357380 788360 776709 613868 283479 330140 356855 376940 510352 173783 047454 883068 768858 845190 073739 610843 855277 585166 090308 718583 204304 152985 628748 961216 296825 766248 404045 242811 530403 857093 553525 312462 943689 435291 288979 601906 367806 540226 502956 367018 438382 241646 041249 912858 419617 092054 244579 079789 485744 230527 344764 266035 095072 145408 / 1 431647 292130 476616 342789 490195 130245 054128 800987 997812 153536 145708 177007 663987 018731 157475 368375 301128 714467 353204 662653 623489 766988 263547 589353 697685 188907 676992 490829 989948 048151 483180 039627 647686 805042 253494 989595 037194 083600 003258 218464 394506 012821 219350 377748 097865 570578 694639 578900 064124 989028 724642 242417 098660 352437 927643 > 8113 [i]
- 4 times code embedding in larger space [i] would yield OA(8113, 300, S8, 92), but
- extracting embedded orthogonal array [i] would yield OA(8109, 296, S8, 92), but