Best Known (51, 79, s)-Nets in Base 8
(51, 79, 354)-Net over F8 — Constructive and digital
Digital (51, 79, 354)-net over F8, using
- 9 times m-reduction [i] based on digital (51, 88, 354)-net over F8, using
- trace code for nets [i] based on digital (7, 44, 177)-net over F64, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 7 and N(F) ≥ 177, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- trace code for nets [i] based on digital (7, 44, 177)-net over F64, using
(51, 79, 516)-Net in Base 8 — Constructive
(51, 79, 516)-net in base 8, using
- 1 times m-reduction [i] based on (51, 80, 516)-net in base 8, using
- base change [i] based on digital (31, 60, 516)-net over F16, using
- trace code for nets [i] based on digital (1, 30, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256, using
- trace code for nets [i] based on digital (1, 30, 258)-net over F256, using
- base change [i] based on digital (31, 60, 516)-net over F16, using
(51, 79, 699)-Net over F8 — Digital
Digital (51, 79, 699)-net over F8, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(879, 699, F8, 28) (dual of [699, 620, 29]-code), using
- 619 step Varšamov–Edel lengthening with (ri) = (5, 2, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 14 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 20 times 0, 1, 22 times 0, 1, 23 times 0, 1, 25 times 0, 1, 28 times 0, 1, 30 times 0, 1, 33 times 0, 1, 35 times 0, 1, 38 times 0, 1, 42 times 0, 1, 45 times 0, 1, 49 times 0) [i] based on linear OA(828, 29, F8, 28) (dual of [29, 1, 29]-code or 29-arc in PG(27,8)), using
- dual of repetition code with length 29 [i]
- 619 step Varšamov–Edel lengthening with (ri) = (5, 2, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 14 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 20 times 0, 1, 22 times 0, 1, 23 times 0, 1, 25 times 0, 1, 28 times 0, 1, 30 times 0, 1, 33 times 0, 1, 35 times 0, 1, 38 times 0, 1, 42 times 0, 1, 45 times 0, 1, 49 times 0) [i] based on linear OA(828, 29, F8, 28) (dual of [29, 1, 29]-code or 29-arc in PG(27,8)), using
(51, 79, 107729)-Net in Base 8 — Upper bound on s
There is no (51, 79, 107730)-net in base 8, because
- the generalized Rao bound for nets shows that 8m ≥ 220880 380875 193575 477766 955546 375575 724667 178598 451081 880549 448842 560904 > 879 [i]