Best Known (69, 69+12, s)-Nets in Base 81
(69, 69+12, 7174494)-Net over F81 — Constructive and digital
Digital (69, 81, 7174494)-net over F81, using
- 811 times duplication [i] based on digital (68, 80, 7174494)-net over F81, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 88574)-net over F81, using
- s-reduction based on digital (0, 0, s)-net over F81 with arbitrarily large s, using
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 0, 88574)-net over F81 (see above)
- digital (0, 1, 88574)-net over F81, using
- s-reduction based on digital (0, 1, s)-net over F81 with arbitrarily large s, using
- digital (0, 1, 88574)-net over F81 (see above)
- digital (0, 1, 88574)-net over F81 (see above)
- digital (0, 1, 88574)-net over F81 (see above)
- digital (0, 1, 88574)-net over F81 (see above)
- digital (0, 1, 88574)-net over F81 (see above)
- digital (2, 4, 88574)-net over F81, using
- s-reduction based on digital (2, 4, 538084)-net over F81, using
- digital (2, 4, 88574)-net over F81 (see above)
- digital (3, 6, 88574)-net over F81, using
- s-reduction based on digital (3, 6, 538248)-net over F81, using
- net defined by OOA [i] based on linear OOA(816, 538248, F81, 3, 3) (dual of [(538248, 3), 1614738, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(816, 538248, F81, 2, 3) (dual of [(538248, 2), 1076490, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(816, 538248, F81, 3, 3) (dual of [(538248, 3), 1614738, 4]-NRT-code), using
- s-reduction based on digital (3, 6, 538248)-net over F81, using
- digital (6, 10, 88574)-net over F81, using
- s-reduction based on digital (6, 10, 265722)-net over F81, using
- net defined by OOA [i] based on linear OOA(8110, 265722, F81, 4, 4) (dual of [(265722, 4), 1062878, 5]-NRT-code), using
- OA 2-folding and stacking [i] based on linear OA(8110, 531444, F81, 4) (dual of [531444, 531434, 5]-code), using
- construction X applied to Ce(3) ⊂ Ce(2) [i] based on
- linear OA(8110, 531441, F81, 4) (dual of [531441, 531431, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 531440 = 813−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(817, 531441, F81, 3) (dual of [531441, 531434, 4]-code or 531441-cap in PG(6,81)), using an extension Ce(2) of the primitive narrow-sense BCH-code C(I) with length 531440 = 813−1, defining interval I = [1,2], and designed minimum distance d ≥ |I|+1 = 3 [i]
- linear OA(810, 3, F81, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(810, s, F81, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(3) ⊂ Ce(2) [i] based on
- OA 2-folding and stacking [i] based on linear OA(8110, 531444, F81, 4) (dual of [531444, 531434, 5]-code), using
- net defined by OOA [i] based on linear OOA(8110, 265722, F81, 4, 4) (dual of [(265722, 4), 1062878, 5]-NRT-code), using
- s-reduction based on digital (6, 10, 265722)-net over F81, using
- digital (10, 16, 88574)-net over F81, using
- s-reduction based on digital (10, 16, 177148)-net over F81, using
- net defined by OOA [i] based on linear OOA(8116, 177148, F81, 6, 6) (dual of [(177148, 6), 1062872, 7]-NRT-code), using
- OA 3-folding and stacking [i] based on linear OA(8116, 531444, F81, 6) (dual of [531444, 531428, 7]-code), using
- construction X applied to Ce(5) ⊂ Ce(4) [i] based on
- linear OA(8116, 531441, F81, 6) (dual of [531441, 531425, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 531440 = 813−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(8113, 531441, F81, 5) (dual of [531441, 531428, 6]-code), using an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 531440 = 813−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(810, 3, F81, 0) (dual of [3, 3, 1]-code) (see above)
- construction X applied to Ce(5) ⊂ Ce(4) [i] based on
- OA 3-folding and stacking [i] based on linear OA(8116, 531444, F81, 6) (dual of [531444, 531428, 7]-code), using
- net defined by OOA [i] based on linear OOA(8116, 177148, F81, 6, 6) (dual of [(177148, 6), 1062872, 7]-NRT-code), using
- s-reduction based on digital (10, 16, 177148)-net over F81, using
- digital (22, 34, 88574)-net over F81, using
- net defined by OOA [i] based on linear OOA(8134, 88574, F81, 12, 12) (dual of [(88574, 12), 1062854, 13]-NRT-code), using
- OA 6-folding and stacking [i] based on linear OA(8134, 531444, F81, 12) (dual of [531444, 531410, 13]-code), using
- construction X applied to Ce(11) ⊂ Ce(10) [i] based on
- linear OA(8134, 531441, F81, 12) (dual of [531441, 531407, 13]-code), using an extension Ce(11) of the primitive narrow-sense BCH-code C(I) with length 531440 = 813−1, defining interval I = [1,11], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(8131, 531441, F81, 11) (dual of [531441, 531410, 12]-code), using an extension Ce(10) of the primitive narrow-sense BCH-code C(I) with length 531440 = 813−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(810, 3, F81, 0) (dual of [3, 3, 1]-code) (see above)
- construction X applied to Ce(11) ⊂ Ce(10) [i] based on
- OA 6-folding and stacking [i] based on linear OA(8134, 531444, F81, 12) (dual of [531444, 531410, 13]-code), using
- net defined by OOA [i] based on linear OOA(8134, 88574, F81, 12, 12) (dual of [(88574, 12), 1062854, 13]-NRT-code), using
- digital (0, 0, 88574)-net over F81, using
- generalized (u, u+v)-construction [i] based on
(69, 69+12, large)-Net over F81 — Digital
Digital (69, 81, large)-net over F81, using
- t-expansion [i] based on digital (60, 81, large)-net over F81, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(8181, large, F81, 21) (dual of [large, large−81, 22]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 21523361 | 818−1, defining interval I = [0,10], and minimum distance d ≥ |{−10,−9,…,10}|+1 = 22 (BCH-bound) [i]
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(8181, large, F81, 21) (dual of [large, large−81, 22]-code), using
(69, 69+12, large)-Net in Base 81 — Upper bound on s
There is no (69, 81, large)-net in base 81, because
- 10 times m-reduction [i] would yield (69, 71, large)-net in base 81, but