Best Known (5, 10, s)-Nets in Base 81
(5, 10, 6642)-Net over F81 — Constructive and digital
Digital (5, 10, 6642)-net over F81, using
- net defined by OOA [i] based on linear OOA(8110, 6642, F81, 5, 5) (dual of [(6642, 5), 33200, 6]-NRT-code), using
- appending kth column [i] based on linear OOA(8110, 6642, F81, 4, 5) (dual of [(6642, 4), 26558, 6]-NRT-code), using
- generalized (u, u+v)-construction [i] based on
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(810, s, F81, 4, 0) with arbitrarily large s, using
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code) (see above)
- linear OOA(811, 82, F81, 4, 1) (dual of [(82, 4), 327, 2]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(811, s, F81, 4, 1) with arbitrarily large s, using
- appending 3 arbitrary columns [i] based on linear OA(811, s, F81, 1) (dual of [s, s−1, 2]-code) with arbitrarily large s, using
- discarding factors / shortening the dual code based on linear OOA(811, s, F81, 4, 1) with arbitrarily large s, using
- linear OOA(811, 82, F81, 4, 1) (dual of [(82, 4), 327, 2]-NRT-code) (see above)
- linear OOA(811, 82, F81, 4, 1) (dual of [(82, 4), 327, 2]-NRT-code) (see above)
- linear OOA(812, 82, F81, 4, 2) (dual of [(82, 4), 326, 3]-NRT-code), using
- extended Reed–Solomon NRT-code RSe(4;326,81) [i]
- linear OOA(815, 82, F81, 4, 5) (dual of [(82, 4), 323, 6]-NRT-code), using
- extended Reed–Solomon NRT-code RSe(4;323,81) [i]
- linear OOA(810, 82, F81, 4, 0) (dual of [(82, 4), 328, 1]-NRT-code), using
- generalized (u, u+v)-construction [i] based on
- appending kth column [i] based on linear OOA(8110, 6642, F81, 4, 5) (dual of [(6642, 4), 26558, 6]-NRT-code), using
(5, 10, 12071)-Net over F81 — Digital
Digital (5, 10, 12071)-net over F81, using
- net defined by OOA [i] based on linear OOA(8110, 12071, F81, 5, 5) (dual of [(12071, 5), 60345, 6]-NRT-code), using
- appending kth column [i] based on linear OOA(8110, 12071, F81, 4, 5) (dual of [(12071, 4), 48274, 6]-NRT-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(8110, 12071, F81, 5) (dual of [12071, 12061, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(8110, 12962, F81, 5) (dual of [12962, 12952, 6]-code), using
- (u, u+v)-construction [i] based on
- linear OA(813, 6481, F81, 2) (dual of [6481, 6478, 3]-code), using
- discarding factors / shortening the dual code based on linear OA(813, 6643, F81, 2) (dual of [6643, 6640, 3]-code), using
- Hamming code H(3,81) [i]
- discarding factors / shortening the dual code based on linear OA(813, 6643, F81, 2) (dual of [6643, 6640, 3]-code), using
- linear OA(817, 6481, F81, 5) (dual of [6481, 6474, 6]-code), using
- linear OA(813, 6481, F81, 2) (dual of [6481, 6478, 3]-code), using
- (u, u+v)-construction [i] based on
- discarding factors / shortening the dual code based on linear OA(8110, 12962, F81, 5) (dual of [12962, 12952, 6]-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(8110, 12071, F81, 5) (dual of [12071, 12061, 6]-code), using
- appending kth column [i] based on linear OOA(8110, 12071, F81, 4, 5) (dual of [(12071, 4), 48274, 6]-NRT-code), using
(5, 10, 6848690)-Net in Base 81 — Upper bound on s
There is no (5, 10, 6848691)-net in base 81, because
- 1 times m-reduction [i] would yield (5, 9, 6848691)-net in base 81, but
- the generalized Rao bound for nets shows that 81m ≥ 150094 641934 740961 > 819 [i]