Information on Result #1133258
Linear OOA(2188, 178, F2, 6, 36) (dual of [(178, 6), 880, 37]-NRT-code), using OOA 6-folding based on linear OA(2188, 1068, F2, 36) (dual of [1068, 880, 37]-code), using
- construction XX applied to C1 = C([989,1022]), C2 = C([995,2]), C3 = C1 + C2 = C([995,1022]), and C∩ = C1 ∩ C2 = C([989,2]) [i] based on
- linear OA(2165, 1023, F2, 34) (dual of [1023, 858, 35]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−34,−33,…,−1}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(2151, 1023, F2, 31) (dual of [1023, 872, 32]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−28,−27,…,2}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(2176, 1023, F2, 37) (dual of [1023, 847, 38]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−34,−33,…,2}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(2140, 1023, F2, 28) (dual of [1023, 883, 29]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−28,−27,…,−1}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(21, 12, F2, 1) (dual of [12, 11, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.