Information on Result #1297213

Linear OA(2102, 132, F2, 38) (dual of [132, 30, 39]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(294, 123, F2, 38) (dual of [123, 29, 39]-code), using
    • 5 times truncation [i] based on linear OA(299, 128, F2, 43) (dual of [128, 29, 44]-code), using
      • an extension Ce(42) of the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43 [i]
  2. linear OA(294, 124, F2, 30) (dual of [124, 30, 31]-code), using Gilbert–VarÅ¡amov bound and bm = 294 > Vbs−1(k−1) = 18038 737831 835352 666380 601600 [i]
  3. linear OA(27, 8, F2, 7) (dual of [8, 1, 8]-code or 8-arc in PG(6,2)), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.