Information on Result #1297465

Linear OA(2225, 273, F2, 84) (dual of [273, 48, 85]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(2208, 255, F2, 84) (dual of [255, 47, 85]-code), using
    • the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,84], and designed minimum distance d ≥ |I|+1 = 85 [i]
  2. linear OA(2208, 256, F2, 67) (dual of [256, 48, 68]-code), using Gilbert–VarÅ¡amov bound and bm = 2208 > Vbs−1(k−1) = 184 108802 416324 205290 974045 232443 347702 913690 697202 929109 423317 [i]
  3. linear OA(216, 17, F2, 16) (dual of [17, 1, 17]-code or 17-arc in PG(15,2)), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2225, 273, F2, 83) (dual of [273, 48, 84]-code) [i]Strength Reduction
2Linear OA(2225, 273, F2, 82) (dual of [273, 48, 83]-code) [i]
3Linear OA(2225, 273, F2, 81) (dual of [273, 48, 82]-code) [i]
4Linear OA(2226, 274, F2, 85) (dual of [274, 48, 86]-code) [i]Adding a Parity Check Bit