Information on Result #1297613
Linear OA(2237, 581, F2, 50) (dual of [581, 344, 51]-code), using construction X with Varšamov bound based on
- linear OA(2232, 572, F2, 50) (dual of [572, 340, 51]-code), using
- 1 times truncation [i] based on linear OA(2233, 573, F2, 51) (dual of [573, 340, 52]-code), using
- construction X applied to Ce(50) ⊂ Ce(40) [i] based on
- linear OA(2208, 512, F2, 51) (dual of [512, 304, 52]-code), using an extension Ce(50) of the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,50], and designed minimum distance d ≥ |I|+1 = 51 [i]
- linear OA(2172, 512, F2, 41) (dual of [512, 340, 42]-code), using an extension Ce(40) of the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(225, 61, F2, 9) (dual of [61, 36, 10]-code), using
- discarding factors / shortening the dual code based on linear OA(225, 63, F2, 9) (dual of [63, 38, 10]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [0,7], and designed minimum distance d ≥ |I|+1 = 10 [i]
- discarding factors / shortening the dual code based on linear OA(225, 63, F2, 9) (dual of [63, 38, 10]-code), using
- construction X applied to Ce(50) ⊂ Ce(40) [i] based on
- 1 times truncation [i] based on linear OA(2233, 573, F2, 51) (dual of [573, 340, 52]-code), using
- linear OA(2232, 576, F2, 48) (dual of [576, 344, 49]-code), using Gilbert–Varšamov bound and bm = 2232 > Vbs−1(k−1) = 3108 969192 492191 771068 821699 345371 313247 612194 449428 756707 440941 625344 [i]
- linear OA(21, 5, F2, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.