Information on Result #1297625

Linear OA(2239, 567, F2, 52) (dual of [567, 328, 53]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(2234, 560, F2, 52) (dual of [560, 326, 53]-code), using
    • construction XX applied to C1 = C([461,0]), C2 = C([469,2]), C3 = C1 + C2 = C([469,0]), and C∩ = C1 ∩ C2 = C([461,2]) [i] based on
      1. linear OA(2208, 511, F2, 51) (dual of [511, 303, 52]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−50,−49,…,0}, and designed minimum distance d ≥ |I|+1 = 52 [i]
      2. linear OA(2190, 511, F2, 45) (dual of [511, 321, 46]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−42,−41,…,2}, and designed minimum distance d ≥ |I|+1 = 46 [i]
      3. linear OA(2217, 511, F2, 53) (dual of [511, 294, 54]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−50,−49,…,2}, and designed minimum distance d ≥ |I|+1 = 54 [i]
      4. linear OA(2181, 511, F2, 43) (dual of [511, 330, 44]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−42,−41,…,0}, and designed minimum distance d ≥ |I|+1 = 44 [i]
      5. linear OA(216, 39, F2, 6) (dual of [39, 23, 7]-code), using
      6. linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
  2. linear OA(2234, 562, F2, 49) (dual of [562, 328, 50]-code), using Gilbert–VarÅ¡amov bound and bm = 2234 > Vbs−1(k−1) = 9995 457785 221961 162459 815823 745323 462185 795127 026269 089119 240578 227439 [i]
  3. linear OA(23, 5, F2, 2) (dual of [5, 2, 3]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.