Information on Result #1297675

Linear OA(2247, 570, F2, 54) (dual of [570, 323, 55]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(2242, 563, F2, 54) (dual of [563, 321, 55]-code), using
    • 1 times truncation [i] based on linear OA(2243, 564, F2, 55) (dual of [564, 321, 56]-code), using
      • construction XX applied to C1 = C([461,0]), C2 = C([467,4]), C3 = C1 + C2 = C([467,0]), and C∩ = C1 ∩ C2 = C([461,4]) [i] based on
        1. linear OA(2208, 511, F2, 51) (dual of [511, 303, 52]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−50,−49,…,0}, and designed minimum distance d ≥ |I|+1 = 52 [i]
        2. linear OA(2208, 511, F2, 49) (dual of [511, 303, 50]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−44,−43,…,4}, and designed minimum distance d ≥ |I|+1 = 50 [i]
        3. linear OA(2226, 511, F2, 55) (dual of [511, 285, 56]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−50,−49,…,4}, and designed minimum distance d ≥ |I|+1 = 56 [i]
        4. linear OA(2190, 511, F2, 45) (dual of [511, 321, 46]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−44,−43,…,0}, and designed minimum distance d ≥ |I|+1 = 46 [i]
        5. linear OA(211, 29, F2, 5) (dual of [29, 18, 6]-code), using
        6. linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)), using
  2. linear OA(2242, 565, F2, 51) (dual of [565, 323, 52]-code), using Gilbert–VarÅ¡amov bound and bm = 2242 > Vbs−1(k−1) = 1 422227 936366 241354 921957 773957 170004 783322 909212 965684 857434 440702 097083 [i]
  3. linear OA(23, 5, F2, 2) (dual of [5, 2, 3]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.