Information on Result #1297689
Linear OA(2246, 569, F2, 54) (dual of [569, 323, 55]-code), using construction X with Varšamov bound based on
- linear OA(2243, 565, F2, 54) (dual of [565, 322, 55]-code), using
- construction XX applied to C1 = C([461,510]), C2 = C([467,4]), C3 = C1 + C2 = C([467,510]), and C∩ = C1 ∩ C2 = C([461,4]) [i] based on
- linear OA(2207, 511, F2, 50) (dual of [511, 304, 51]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−50,−49,…,−1}, and designed minimum distance d ≥ |I|+1 = 51 [i]
- linear OA(2208, 511, F2, 49) (dual of [511, 303, 50]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−44,−43,…,4}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(2226, 511, F2, 55) (dual of [511, 285, 56]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−50,−49,…,4}, and designed minimum distance d ≥ |I|+1 = 56 [i]
- linear OA(2189, 511, F2, 44) (dual of [511, 322, 45]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−44,−43,…,−1}, and designed minimum distance d ≥ |I|+1 = 45 [i]
- linear OA(211, 29, F2, 5) (dual of [29, 18, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(211, 32, F2, 5) (dual of [32, 21, 6]-code), using
- an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 31 = 25−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- discarding factors / shortening the dual code based on linear OA(211, 32, F2, 5) (dual of [32, 21, 6]-code), using
- linear OA(26, 25, F2, 3) (dual of [25, 19, 4]-code or 25-cap in PG(5,2)), using
- discarding factors / shortening the dual code based on linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
- construction XX applied to C1 = C([461,510]), C2 = C([467,4]), C3 = C1 + C2 = C([467,510]), and C∩ = C1 ∩ C2 = C([461,4]) [i] based on
- linear OA(2243, 566, F2, 51) (dual of [566, 323, 52]-code), using Gilbert–Varšamov bound and bm = 2243 > Vbs−1(k−1) = 1 559984 984189 704211 507623 460383 106708 467115 547968 868307 200627 757975 698920 [i]
- linear OA(22, 3, F2, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,2)), using
- dual of repetition code with length 3 [i]
- Hamming code H(2,2) [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2247, 570, F2, 55) (dual of [570, 323, 56]-code) | [i] | Adding a Parity Check Bit |