Information on Result #1297863

Linear OA(334, 261, F3, 9) (dual of [261, 227, 10]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(333, 259, F3, 9) (dual of [259, 226, 10]-code), using
    • construction XX applied to C1 = C([239,4]), C2 = C([0,6]), C3 = C1 + C2 = C([0,4]), and C∩ = C1 ∩ C2 = C([239,6]) [i] based on
      1. linear OA(326, 242, F3, 8) (dual of [242, 216, 9]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,4}, and designed minimum distance d ≥ |I|+1 = 9 [i]
      2. linear OA(321, 242, F3, 7) (dual of [242, 221, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
      3. linear OA(331, 242, F3, 10) (dual of [242, 211, 11]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,6}, and designed minimum distance d ≥ |I|+1 = 11 [i]
      4. linear OA(316, 242, F3, 5) (dual of [242, 226, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
      5. linear OA(31, 11, F3, 1) (dual of [11, 10, 2]-code), using
      6. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using
  2. linear OA(333, 260, F3, 8) (dual of [260, 227, 9]-code), using Gilbert–VarÅ¡amov bound and bm = 333 > Vbs−1(k−1) = 1855 256393 456667 [i]
  3. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.