Information on Result #1298033

Linear OA(364, 261, F3, 18) (dual of [261, 197, 19]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(363, 259, F3, 18) (dual of [259, 196, 19]-code), using
    • construction XX applied to C1 = C([239,13]), C2 = C([0,15]), C3 = C1 + C2 = C([0,13]), and C∩ = C1 ∩ C2 = C([239,15]) [i] based on
      1. linear OA(356, 242, F3, 17) (dual of [242, 186, 18]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,13}, and designed minimum distance d ≥ |I|+1 = 18 [i]
      2. linear OA(351, 242, F3, 16) (dual of [242, 191, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
      3. linear OA(361, 242, F3, 19) (dual of [242, 181, 20]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,15}, and designed minimum distance d ≥ |I|+1 = 20 [i]
      4. linear OA(346, 242, F3, 14) (dual of [242, 196, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
      5. linear OA(31, 11, F3, 1) (dual of [11, 10, 2]-code), using
      6. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using
  2. linear OA(363, 260, F3, 17) (dual of [260, 197, 18]-code), using Gilbert–VarÅ¡amov bound and bm = 363 > Vbs−1(k−1) = 827457 067033 786527 872193 248283 [i]
  3. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.