Information on Result #1298122
Linear OA(376, 531471, F3, 9) (dual of [531471, 531395, 10]-code), using construction X with Varšamov bound based on
- linear OA(374, 531468, F3, 9) (dual of [531468, 531394, 10]-code), using
- construction X4 applied to C([0,4]) ⊂ C([0,3]) [i] based on
- linear OA(373, 531442, F3, 9) (dual of [531442, 531369, 10]-code), using the expurgated narrow-sense BCH-code C(I) with length 531442 | 324−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
- linear OA(349, 531442, F3, 7) (dual of [531442, 531393, 8]-code), using the expurgated narrow-sense BCH-code C(I) with length 531442 | 324−1, defining interval I = [0,3], and minimum distance d ≥ |{−3,−2,…,3}|+1 = 8 (BCH-bound) [i]
- linear OA(325, 26, F3, 25) (dual of [26, 1, 26]-code or 26-arc in PG(24,3)), using
- dual of repetition code with length 26 [i]
- linear OA(31, 26, F3, 1) (dual of [26, 25, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X4 applied to C([0,4]) ⊂ C([0,3]) [i] based on
- linear OA(374, 531469, F3, 7) (dual of [531469, 531395, 8]-code), using Gilbert–Varšamov bound and bm = 374 > Vbs−1(k−1) = 2003 089685 932197 782574 274390 499569 [i]
- linear OA(31, 2, F3, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(376, 177157, F3, 3, 9) (dual of [(177157, 3), 531395, 10]-NRT-code) | [i] | OOA Folding |