Information on Result #1298247

Linear OA(395, 19708, F3, 15) (dual of [19708, 19613, 16]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(392, 19704, F3, 15) (dual of [19704, 19612, 16]-code), using
    • construction X4 applied to C([0,7]) ⊂ C([0,6]) [i] based on
      1. linear OA(391, 19684, F3, 15) (dual of [19684, 19593, 16]-code), using the expurgated narrow-sense BCH-code C(I) with length 19684 | 318−1, defining interval I = [0,7], and minimum distance d ≥ |{−7,−6,…,7}|+1 = 16 (BCH-bound) [i]
      2. linear OA(373, 19684, F3, 13) (dual of [19684, 19611, 14]-code), using the expurgated narrow-sense BCH-code C(I) with length 19684 | 318−1, defining interval I = [0,6], and minimum distance d ≥ |{−6,−5,…,6}|+1 = 14 (BCH-bound) [i]
      3. linear OA(319, 20, F3, 19) (dual of [20, 1, 20]-code or 20-arc in PG(18,3)), using
      4. linear OA(31, 20, F3, 1) (dual of [20, 19, 2]-code), using
  2. linear OA(392, 19705, F3, 12) (dual of [19705, 19613, 13]-code), using Gilbert–VarÅ¡amov bound and bm = 392 > Vbs−1(k−1) = 8 895727 183920 215746 695430 323734 252372 012641 [i]
  3. linear OA(32, 3, F3, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,3)), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(395, 9854, F3, 2, 15) (dual of [(9854, 2), 19613, 16]-NRT-code) [i]OOA Folding
2Linear OOA(395, 4927, F3, 4, 15) (dual of [(4927, 4), 19613, 16]-NRT-code) [i]