Information on Result #1298368
Linear OA(3106, 261, F3, 33) (dual of [261, 155, 34]-code), using construction X with Varšamov bound based on
- linear OA(3101, 252, F3, 33) (dual of [252, 151, 34]-code), using
- construction XX applied to C1 = C([241,30]), C2 = C([0,31]), C3 = C1 + C2 = C([0,30]), and C∩ = C1 ∩ C2 = C([241,31]) [i] based on
- linear OA(396, 242, F3, 32) (dual of [242, 146, 33]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−1,0,…,30}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(396, 242, F3, 32) (dual of [242, 146, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(3101, 242, F3, 33) (dual of [242, 141, 34]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−1,0,…,31}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(391, 242, F3, 31) (dual of [242, 151, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code) (see above)
- construction XX applied to C1 = C([241,30]), C2 = C([0,31]), C3 = C1 + C2 = C([0,30]), and C∩ = C1 ∩ C2 = C([241,31]) [i] based on
- linear OA(3101, 256, F3, 31) (dual of [256, 155, 32]-code), using Gilbert–Varšamov bound and bm = 3101 > Vbs−1(k−1) = 1 153423 196908 984371 834496 399166 559169 383556 818603 [i]
- linear OA(31, 5, F3, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.