Information on Result #1298652

Linear OA(3141, 767, F3, 34) (dual of [767, 626, 35]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(3139, 763, F3, 34) (dual of [763, 624, 35]-code), using
    • construction XX applied to C1 = C([334,365]), C2 = C([340,367]), C3 = C1 + C2 = C([340,365]), and C∩ = C1 ∩ C2 = C([334,367]) [i] based on
      1. linear OA(3124, 728, F3, 32) (dual of [728, 604, 33]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {334,335,…,365}, and designed minimum distance d ≥ |I|+1 = 33 [i]
      2. linear OA(3109, 728, F3, 28) (dual of [728, 619, 29]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {340,341,…,367}, and designed minimum distance d ≥ |I|+1 = 29 [i]
      3. linear OA(3130, 728, F3, 34) (dual of [728, 598, 35]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {334,335,…,367}, and designed minimum distance d ≥ |I|+1 = 35 [i]
      4. linear OA(3103, 728, F3, 26) (dual of [728, 625, 27]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {340,341,…,365}, and designed minimum distance d ≥ |I|+1 = 27 [i]
      5. linear OA(38, 28, F3, 5) (dual of [28, 20, 6]-code), using
      6. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code), using
  2. linear OA(3139, 765, F3, 33) (dual of [765, 626, 34]-code), using Gilbert–VarÅ¡amov bound and bm = 3139 > Vbs−1(k−1) = 1 568361 470016 231033 227559 929581 647789 467832 411400 460860 217716 073649 [i]
  3. linear OA(30, 2, F3, 0) (dual of [2, 2, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.