Information on Result #1298896
Linear OA(3177, 211, F3, 83) (dual of [211, 34, 84]-code), using construction X with Varšamov bound based on
- linear OA(3173, 205, F3, 83) (dual of [205, 32, 84]-code), using
- 39 times truncation [i] based on linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- linear OA(3212, 243, F3, 122) (dual of [243, 31, 123]-code), using an extension Ce(121) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,121], and designed minimum distance d ≥ |I|+1 = 122 [i]
- linear OA(3211, 243, F3, 121) (dual of [243, 32, 122]-code), using an extension Ce(120) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,120], and designed minimum distance d ≥ |I|+1 = 121 [i]
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- 39 times truncation [i] based on linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- linear OA(3173, 207, F3, 80) (dual of [207, 34, 81]-code), using Gilbert–Varšamov bound and bm = 3173 > Vbs−1(k−1) = 18093 910754 900894 215213 379585 384915 158758 715049 161648 718552 069187 386266 967847 402105 [i]
- linear OA(32, 4, F3, 2) (dual of [4, 2, 3]-code or 4-arc in PG(1,3)), using
- extended Reed–Solomon code RSe(2,3) [i]
- Hamming code H(2,3) [i]
- Simplex code S(2,3) [i]
- the Tetracode [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3178, 213, F3, 83) (dual of [213, 35, 84]-code) | [i] | Construction X with Varšamov Bound |