Information on Result #1298930
Linear OA(3180, 2229, F3, 36) (dual of [2229, 2049, 37]-code), using construction X with Varšamov bound based on
- linear OA(3177, 2224, F3, 36) (dual of [2224, 2047, 37]-code), using
- construction X applied to C([0,18]) ⊂ C([0,15]) [i] based on
- linear OA(3169, 2188, F3, 37) (dual of [2188, 2019, 38]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,18], and minimum distance d ≥ |{−18,−17,…,18}|+1 = 38 (BCH-bound) [i]
- linear OA(3141, 2188, F3, 31) (dual of [2188, 2047, 32]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,15], and minimum distance d ≥ |{−15,−14,…,15}|+1 = 32 (BCH-bound) [i]
- linear OA(38, 36, F3, 4) (dual of [36, 28, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(38, 41, F3, 4) (dual of [41, 33, 5]-code), using
- the narrow-sense BCH-code C(I) with length 41 | 38−1, defining interval I = [1,1], and minimum distance d ≥ |{−3,−1,1,3}|+1 = 5 (BCH-bound) [i]
- discarding factors / shortening the dual code based on linear OA(38, 41, F3, 4) (dual of [41, 33, 5]-code), using
- construction X applied to C([0,18]) ⊂ C([0,15]) [i] based on
- linear OA(3177, 2226, F3, 34) (dual of [2226, 2049, 35]-code), using Gilbert–Varšamov bound and bm = 3177 > Vbs−1(k−1) = 227461 992845 602889 111051 516126 411094 703952 142809 670597 134961 328167 871148 952630 816579 [i]
- linear OA(31, 3, F3, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.