Information on Result #1299002
Linear OA(3198, 233, F3, 95) (dual of [233, 35, 96]-code), using construction X with Varšamov bound based on
- linear OA(3185, 217, F3, 95) (dual of [217, 32, 96]-code), using
- 27 times truncation [i] based on linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- linear OA(3212, 243, F3, 122) (dual of [243, 31, 123]-code), using an extension Ce(121) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,121], and designed minimum distance d ≥ |I|+1 = 122 [i]
- linear OA(3211, 243, F3, 121) (dual of [243, 32, 122]-code), using an extension Ce(120) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,120], and designed minimum distance d ≥ |I|+1 = 121 [i]
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- 27 times truncation [i] based on linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- linear OA(3185, 220, F3, 86) (dual of [220, 35, 87]-code), using Gilbert–Varšamov bound and bm = 3185 > Vbs−1(k−1) = 10399 253230 652132 646398 264493 027732 174159 469487 851706 219171 269804 582417 686681 243380 722875 [i]
- linear OA(310, 13, F3, 8) (dual of [13, 3, 9]-code), using
- Simplex code S(3,3) [i]
- the expurgated narrow-sense BCH-code C(I) with length 13 | 33−1, defining interval I = [0,6], and minimum distance d ≥ |{−1,0,…,6}|+1 = 9 (BCH-bound) [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.