Information on Result #1299085
Linear OA(3192, 230, F3, 89) (dual of [230, 38, 90]-code), using construction X with Varšamov bound based on
- linear OA(3191, 228, F3, 89) (dual of [228, 37, 90]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(3180, 212, F3, 90) (dual of [212, 32, 91]-code), using
- 32 times truncation [i] based on linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- linear OA(3212, 243, F3, 122) (dual of [243, 31, 123]-code), using an extension Ce(121) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,121], and designed minimum distance d ≥ |I|+1 = 122 [i]
- linear OA(3211, 243, F3, 121) (dual of [243, 32, 122]-code), using an extension Ce(120) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,120], and designed minimum distance d ≥ |I|+1 = 121 [i]
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- 32 times truncation [i] based on linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- linear OA(3180, 217, F3, 83) (dual of [217, 37, 84]-code), using Gilbert–Varšamov bound and bm = 3180 > Vbs−1(k−1) = 73 193471 307046 765229 623206 413370 830316 001463 529472 726017 401343 916791 134241 392071 282657 [i]
- linear OA(36, 11, F3, 5) (dual of [11, 5, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(36, 12, F3, 5) (dual of [12, 6, 6]-code), using
- extended Golay code Ge(3) [i]
- discarding factors / shortening the dual code based on linear OA(36, 12, F3, 5) (dual of [12, 6, 6]-code), using
- linear OA(3180, 212, F3, 90) (dual of [212, 32, 91]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(3191, 229, F3, 88) (dual of [229, 38, 89]-code), using Gilbert–Varšamov bound and bm = 3191 > Vbs−1(k−1) = 8 184995 695802 971788 548779 695439 705804 433876 113790 971310 171155 605459 686803 964156 580618 808785 [i]
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.