Information on Result #1299114
Linear OA(3195, 2228, F3, 40) (dual of [2228, 2033, 41]-code), using construction X with Varšamov bound based on
- linear OA(3193, 2225, F3, 40) (dual of [2225, 2032, 41]-code), using
- construction X applied to Ce(39) ⊂ Ce(33) [i] based on
- linear OA(3183, 2187, F3, 40) (dual of [2187, 2004, 41]-code), using an extension Ce(39) of the primitive narrow-sense BCH-code C(I) with length 2186 = 37−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(3155, 2187, F3, 34) (dual of [2187, 2032, 35]-code), using an extension Ce(33) of the primitive narrow-sense BCH-code C(I) with length 2186 = 37−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(310, 38, F3, 5) (dual of [38, 28, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(310, 39, F3, 5) (dual of [39, 29, 6]-code), using
- construction X applied to Ce(39) ⊂ Ce(33) [i] based on
- linear OA(3193, 2226, F3, 38) (dual of [2226, 2033, 39]-code), using Gilbert–Varšamov bound and bm = 3193 > Vbs−1(k−1) = 52 912264 907506 572095 520996 308177 658118 003183 975195 784973 595011 092883 380937 005897 738608 406339 [i]
- linear OA(31, 2, F3, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3195, 1114, F3, 2, 40) (dual of [(1114, 2), 2033, 41]-NRT-code) | [i] | OOA Folding |