Information on Result #1299126
Linear OA(3195, 6629, F3, 33) (dual of [6629, 6434, 34]-code), using construction X with Varšamov bound based on
- linear OA(3193, 6626, F3, 33) (dual of [6626, 6433, 34]-code), using
- construction X applied to C([0,16]) ⊂ C([0,12]) [i] based on
- linear OA(3177, 6562, F3, 33) (dual of [6562, 6385, 34]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 316−1, defining interval I = [0,16], and minimum distance d ≥ |{−16,−15,…,16}|+1 = 34 (BCH-bound) [i]
- linear OA(3129, 6562, F3, 25) (dual of [6562, 6433, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 316−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound) [i]
- linear OA(316, 64, F3, 7) (dual of [64, 48, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(316, 82, F3, 7) (dual of [82, 66, 8]-code), using
- construction X applied to C([0,16]) ⊂ C([0,12]) [i] based on
- linear OA(3193, 6627, F3, 31) (dual of [6627, 6434, 32]-code), using Gilbert–Varšamov bound and bm = 3193 > Vbs−1(k−1) = 16 489869 887520 399122 154359 612449 383052 343696 415717 203010 726928 857752 870405 521026 562566 067593 [i]
- linear OA(31, 2, F3, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.