Information on Result #1299142
Linear OA(3221, 260, F3, 104) (dual of [260, 39, 105]-code), using construction X with Varšamov bound based on
- linear OA(3194, 226, F3, 104) (dual of [226, 32, 105]-code), using
- 18 times truncation [i] based on linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- linear OA(3212, 243, F3, 122) (dual of [243, 31, 123]-code), using an extension Ce(121) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,121], and designed minimum distance d ≥ |I|+1 = 122 [i]
- linear OA(3211, 243, F3, 121) (dual of [243, 32, 122]-code), using an extension Ce(120) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,120], and designed minimum distance d ≥ |I|+1 = 121 [i]
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- 18 times truncation [i] based on linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- linear OA(3194, 233, F3, 89) (dual of [233, 39, 90]-code), using Gilbert–Varšamov bound and bm = 3194 > Vbs−1(k−1) = 178 853628 452670 090430 928398 622595 034444 238781 724013 645726 689431 729558 612962 794675 231488 605985 [i]
- linear OA(320, 27, F3, 14) (dual of [27, 7, 15]-code), using
- an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 26 = 33−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.