Information on Result #1299344
Linear OA(3212, 2235, F3, 43) (dual of [2235, 2023, 44]-code), using construction X with Varšamov bound based on
- linear OA(3207, 2226, F3, 43) (dual of [2226, 2019, 44]-code), using
- construction X applied to C([0,21]) ⊂ C([0,18]) [i] based on
- linear OA(3197, 2188, F3, 43) (dual of [2188, 1991, 44]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,21], and minimum distance d ≥ |{−21,−20,…,21}|+1 = 44 (BCH-bound) [i]
- linear OA(3169, 2188, F3, 37) (dual of [2188, 2019, 38]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,18], and minimum distance d ≥ |{−18,−17,…,18}|+1 = 38 (BCH-bound) [i]
- linear OA(310, 38, F3, 5) (dual of [38, 28, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(310, 39, F3, 5) (dual of [39, 29, 6]-code), using
- construction X applied to C([0,21]) ⊂ C([0,18]) [i] based on
- linear OA(3207, 2230, F3, 41) (dual of [2230, 2023, 42]-code), using Gilbert–Varšamov bound and bm = 3207 > Vbs−1(k−1) = 80 363964 294351 467864 807814 732072 156416 674099 568709 965284 904290 380809 873095 007073 791569 635436 540979 [i]
- linear OA(31, 5, F3, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.