Information on Result #1299384
Linear OA(3214, 6634, F3, 36) (dual of [6634, 6420, 37]-code), using construction X with Varšamov bound based on
- linear OA(3209, 6625, F3, 36) (dual of [6625, 6416, 37]-code), using
- construction X applied to Ce(36) ⊂ Ce(27) [i] based on
- linear OA(3193, 6561, F3, 37) (dual of [6561, 6368, 38]-code), using an extension Ce(36) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(3145, 6561, F3, 28) (dual of [6561, 6416, 29]-code), using an extension Ce(27) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(316, 64, F3, 7) (dual of [64, 48, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(316, 82, F3, 7) (dual of [82, 66, 8]-code), using
- construction X applied to Ce(36) ⊂ Ce(27) [i] based on
- linear OA(3209, 6629, F3, 34) (dual of [6629, 6420, 35]-code), using Gilbert–Varšamov bound and bm = 3209 > Vbs−1(k−1) = 1167 779543 049656 865061 461900 898136 206804 915774 311911 021287 965403 127646 562205 766743 725316 203445 993937 [i]
- linear OA(31, 5, F3, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3214, 3317, F3, 2, 36) (dual of [(3317, 2), 6420, 37]-NRT-code) | [i] | OOA Folding |