Information on Result #1299403
Linear OA(3215, 59105, F3, 30) (dual of [59105, 58890, 31]-code), using construction X with Varšamov bound based on
- linear OA(3210, 59099, F3, 30) (dual of [59099, 58889, 31]-code), using
- construction X applied to C([0,15]) ⊂ C([0,12]) [i] based on
- linear OA(3201, 59050, F3, 31) (dual of [59050, 58849, 32]-code), using the expurgated narrow-sense BCH-code C(I) with length 59050 | 320−1, defining interval I = [0,15], and minimum distance d ≥ |{−15,−14,…,15}|+1 = 32 (BCH-bound) [i]
- linear OA(3161, 59050, F3, 25) (dual of [59050, 58889, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 59050 | 320−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound) [i]
- linear OA(39, 49, F3, 4) (dual of [49, 40, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(39, 80, F3, 4) (dual of [80, 71, 5]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 5 [i]
- discarding factors / shortening the dual code based on linear OA(39, 80, F3, 4) (dual of [80, 71, 5]-code), using
- construction X applied to C([0,15]) ⊂ C([0,12]) [i] based on
- linear OA(3210, 59100, F3, 25) (dual of [59100, 58890, 26]-code), using Gilbert–Varšamov bound and bm = 3210 > Vbs−1(k−1) = 88 715018 483890 340953 714570 007226 383270 792574 772126 096316 306979 001959 301315 981146 280088 208292 680891 [i]
- linear OA(34, 5, F3, 4) (dual of [5, 1, 5]-code or 5-arc in PG(3,3)), using
- dual of repetition code with length 5 [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.