Information on Result #1299423
Linear OA(3246, 282, F3, 122) (dual of [282, 36, 123]-code), using construction X with Varšamov bound based on
- linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- linear OA(3212, 243, F3, 122) (dual of [243, 31, 123]-code), using an extension Ce(121) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,121], and designed minimum distance d ≥ |I|+1 = 122 [i]
- linear OA(3211, 243, F3, 121) (dual of [243, 32, 122]-code), using an extension Ce(120) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,120], and designed minimum distance d ≥ |I|+1 = 121 [i]
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- linear OA(3212, 248, F3, 100) (dual of [248, 36, 101]-code), using Gilbert–Varšamov bound and bm = 3212 > Vbs−1(k−1) = 82979 381538 375491 750855 022472 632718 633298 468965 602427 927738 848917 126467 801419 472244 952466 737696 658635 [i]
- linear OA(330, 34, F3, 21) (dual of [34, 4, 22]-code), using
- 2 times truncation [i] based on linear OA(332, 36, F3, 23) (dual of [36, 4, 24]-code), using
- a code of Belov type defined by PG(3,3) ∖ PG(1,3) [i]
- 2 times truncation [i] based on linear OA(332, 36, F3, 23) (dual of [36, 4, 24]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.