Information on Result #1299450
Linear OA(3219, 19749, F3, 34) (dual of [19749, 19530, 35]-code), using construction X with Varšamov bound based on
- linear OA(3215, 19744, F3, 34) (dual of [19744, 19529, 35]-code), using
- construction X applied to Ce(33) ⊂ Ce(25) [i] based on
- linear OA(3199, 19683, F3, 34) (dual of [19683, 19484, 35]-code), using an extension Ce(33) of the primitive narrow-sense BCH-code C(I) with length 19682 = 39−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(3154, 19683, F3, 26) (dual of [19683, 19529, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 19682 = 39−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(316, 61, F3, 7) (dual of [61, 45, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(316, 82, F3, 7) (dual of [82, 66, 8]-code), using
- construction X applied to Ce(33) ⊂ Ce(25) [i] based on
- linear OA(3215, 19745, F3, 30) (dual of [19745, 19530, 31]-code), using Gilbert–Varšamov bound and bm = 3215 > Vbs−1(k−1) = 2 199555 386505 875081 956037 830616 595785 387160 208306 941923 929769 276728 661800 215801 719535 575828 776425 202305 [i]
- linear OA(33, 4, F3, 3) (dual of [4, 1, 4]-code or 4-arc in PG(2,3) or 4-cap in PG(2,3)), using
- dual of repetition code with length 4 [i]
- oval in PG(2, 3) [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3219, 6583, F3, 3, 34) (dual of [(6583, 3), 19530, 35]-NRT-code) | [i] | OOA Folding |