Information on Result #1299521

Linear OA(3250, 283, F3, 126) (dual of [283, 33, 127]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(3224, 254, F3, 126) (dual of [254, 30, 127]-code), using
    • construction XX applied to C1 = C([239,121]), C2 = C([0,124]), C3 = C1 + C2 = C([0,121]), and C∩ = C1 ∩ C2 = C([239,124]) [i] based on
      1. linear OA(3217, 242, F3, 125) (dual of [242, 25, 126]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,121}, and designed minimum distance d ≥ |I|+1 = 126 [i]
      2. linear OA(3217, 242, F3, 125) (dual of [242, 25, 126]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,124], and designed minimum distance d ≥ |I|+1 = 126 [i]
      3. linear OA(3222, 242, F3, 128) (dual of [242, 20, 129]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,124}, and designed minimum distance d ≥ |I|+1 = 129 [i]
      4. linear OA(3212, 242, F3, 122) (dual of [242, 30, 123]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,121], and designed minimum distance d ≥ |I|+1 = 123 [i]
      5. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using
      6. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code) (see above)
  2. linear OA(3224, 257, F3, 108) (dual of [257, 33, 109]-code), using Gilbert–VarÅ¡amov bound and bm = 3224 > Vbs−1(k−1) = 46093 764274 181954 538180 510992 821651 498319 142210 721033 434961 935891 265419 575196 263690 242701 620450 717565 252609 [i]
  3. linear OA(323, 26, F3, 17) (dual of [26, 3, 18]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.