Information on Result #1299532
Linear OA(3227, 6629, F3, 39) (dual of [6629, 6402, 40]-code), using construction X with Varšamov bound based on
- linear OA(3225, 6626, F3, 39) (dual of [6626, 6401, 40]-code), using
- construction X applied to C([0,19]) ⊂ C([0,15]) [i] based on
- linear OA(3209, 6562, F3, 39) (dual of [6562, 6353, 40]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 316−1, defining interval I = [0,19], and minimum distance d ≥ |{−19,−18,…,19}|+1 = 40 (BCH-bound) [i]
- linear OA(3161, 6562, F3, 31) (dual of [6562, 6401, 32]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 316−1, defining interval I = [0,15], and minimum distance d ≥ |{−15,−14,…,15}|+1 = 32 (BCH-bound) [i]
- linear OA(316, 64, F3, 7) (dual of [64, 48, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(316, 82, F3, 7) (dual of [82, 66, 8]-code), using
- construction X applied to C([0,19]) ⊂ C([0,15]) [i] based on
- linear OA(3225, 6627, F3, 37) (dual of [6627, 6402, 38]-code), using Gilbert–Varšamov bound and bm = 3225 > Vbs−1(k−1) = 61861 032191 413926 304308 618558 661952 015430 683167 537026 323032 224740 037201 631305 355978 598759 496627 680670 848393 [i]
- linear OA(31, 2, F3, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.