Information on Result #1299544

Linear OA(3249, 282, F3, 126) (dual of [282, 33, 127]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(3226, 257, F3, 126) (dual of [257, 31, 127]-code), using
    • 1 times truncation [i] based on linear OA(3227, 258, F3, 127) (dual of [258, 31, 128]-code), using
      • construction XX applied to C1 = C([239,121]), C2 = C([1,124]), C3 = C1 + C2 = C([1,121]), and C∩ = C1 ∩ C2 = C([239,124]) [i] based on
        1. linear OA(3217, 242, F3, 125) (dual of [242, 25, 126]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,121}, and designed minimum distance d ≥ |I|+1 = 126 [i]
        2. linear OA(3216, 242, F3, 124) (dual of [242, 26, 125]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,124], and designed minimum distance d ≥ |I|+1 = 125 [i]
        3. linear OA(3222, 242, F3, 128) (dual of [242, 20, 129]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,124}, and designed minimum distance d ≥ |I|+1 = 129 [i]
        4. linear OA(3211, 242, F3, 121) (dual of [242, 31, 122]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,121], and designed minimum distance d ≥ |I|+1 = 122 [i]
        5. linear OA(34, 10, F3, 3) (dual of [10, 6, 4]-code or 10-cap in PG(3,3)), using
        6. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using
  2. linear OA(3226, 259, F3, 109) (dual of [259, 33, 110]-code), using Gilbert–VarÅ¡amov bound and bm = 3226 > Vbs−1(k−1) = 377877 341981 109987 381732 444994 060887 994481 302741 535781 575296 558544 802229 423702 854540 395930 507520 357927 785481 [i]
  3. linear OA(321, 23, F3, 16) (dual of [23, 2, 17]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.