Information on Result #1299578
Linear OA(3232, 6633, F3, 40) (dual of [6633, 6401, 41]-code), using construction X with Varšamov bound based on
- linear OA(3230, 6630, F3, 40) (dual of [6630, 6400, 41]-code), using
- construction X applied to Ce(39) ⊂ Ce(30) [i] based on
- linear OA(3209, 6561, F3, 40) (dual of [6561, 6352, 41]-code), using an extension Ce(39) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(3161, 6561, F3, 31) (dual of [6561, 6400, 32]-code), using an extension Ce(30) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,30], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(321, 69, F3, 8) (dual of [69, 48, 9]-code), using
- discarding factors / shortening the dual code based on linear OA(321, 80, F3, 8) (dual of [80, 59, 9]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [0,7], and designed minimum distance d ≥ |I|+1 = 9 [i]
- discarding factors / shortening the dual code based on linear OA(321, 80, F3, 8) (dual of [80, 59, 9]-code), using
- construction X applied to Ce(39) ⊂ Ce(30) [i] based on
- linear OA(3230, 6631, F3, 38) (dual of [6631, 6401, 39]-code), using Gilbert–Varšamov bound and bm = 3230 > Vbs−1(k−1) = 22 536545 402145 545427 944089 236023 962794 430052 198218 199281 764359 861848 111722 424600 706895 988368 404901 317198 598233 [i]
- linear OA(31, 2, F3, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.