Information on Result #1299591
Linear OA(3236, 6622, F3, 41) (dual of [6622, 6386, 42]-code), using construction X with Varšamov bound based on
- linear OA(3232, 6616, F3, 41) (dual of [6616, 6384, 42]-code), using
- construction X applied to Ce(40) ⊂ Ce(33) [i] based on
- linear OA(3217, 6561, F3, 41) (dual of [6561, 6344, 42]-code), using an extension Ce(40) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(3177, 6561, F3, 34) (dual of [6561, 6384, 35]-code), using an extension Ce(33) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(315, 55, F3, 6) (dual of [55, 40, 7]-code), using
- discarding factors / shortening the dual code based on linear OA(315, 85, F3, 6) (dual of [85, 70, 7]-code), using
- construction X applied to Ce(40) ⊂ Ce(33) [i] based on
- linear OA(3232, 6618, F3, 38) (dual of [6618, 6386, 39]-code), using Gilbert–Varšamov bound and bm = 3232 > Vbs−1(k−1) = 20 953914 291880 767106 669308 668958 540268 417759 975416 131160 705479 330989 677798 897678 858451 559607 952518 039458 294691 [i]
- linear OA(32, 4, F3, 2) (dual of [4, 2, 3]-code or 4-arc in PG(1,3)), using
- extended Reed–Solomon code RSe(2,3) [i]
- Hamming code H(2,3) [i]
- Simplex code S(2,3) [i]
- the Tetracode [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3236, 3311, F3, 2, 41) (dual of [(3311, 2), 6386, 42]-NRT-code) | [i] | OOA Folding |