Information on Result #1299751

Linear OA(440, 272, F4, 12) (dual of [272, 232, 13]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(438, 268, F4, 12) (dual of [268, 230, 13]-code), using
    • construction XX applied to C1 = C([253,8]), C2 = C([0,9]), C3 = C1 + C2 = C([0,8]), and C∩ = C1 ∩ C2 = C([253,9]) [i] based on
      1. linear OA(433, 255, F4, 11) (dual of [255, 222, 12]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−2,−1,…,8}, and designed minimum distance d ≥ |I|+1 = 12 [i]
      2. linear OA(429, 255, F4, 10) (dual of [255, 226, 11]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
      3. linear OA(437, 255, F4, 12) (dual of [255, 218, 13]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−2,−1,…,9}, and designed minimum distance d ≥ |I|+1 = 13 [i]
      4. linear OA(425, 255, F4, 9) (dual of [255, 230, 10]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,8], and designed minimum distance d ≥ |I|+1 = 10 [i]
      5. linear OA(41, 9, F4, 1) (dual of [9, 8, 2]-code), using
      6. linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
  2. linear OA(438, 270, F4, 11) (dual of [270, 232, 12]-code), using Gilbert–VarÅ¡amov bound and bm = 438 > Vbs−1(k−1) = 27608 734703 078646 235702 [i]
  3. linear OA(40, 2, F4, 0) (dual of [2, 2, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.