Information on Result #1299810

Linear OA(455, 85, F4, 26) (dual of [85, 30, 27]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(449, 76, F4, 26) (dual of [76, 27, 27]-code), using
    • construction XX applied to Ce(25) ⊂ Ce(21) ⊂ Ce(20) [i] based on
      1. linear OA(444, 64, F4, 26) (dual of [64, 20, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
      2. linear OA(438, 64, F4, 22) (dual of [64, 26, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
      3. linear OA(437, 64, F4, 21) (dual of [64, 27, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
      4. linear OA(44, 11, F4, 3) (dual of [11, 7, 4]-code or 11-cap in PG(3,4)), using
      5. linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using
  2. linear OA(449, 79, F4, 22) (dual of [79, 30, 23]-code), using Gilbert–VarÅ¡amov bound and bm = 449 > Vbs−1(k−1) = 64985 735791 865030 064722 453764 [i]
  3. linear OA(43, 6, F4, 3) (dual of [6, 3, 4]-code or 6-arc in PG(2,4) or 6-cap in PG(2,4)), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.